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6 Notation
𝑀 is a negatively curved dim = 𝑛 closed Riemannian manifold with metric 𝑔, metric connection ∇, and
(nonnegative) Laplace-Beltrami Operator Δ𝑀 . Let 𝑘−𝑡Δ/2(𝑥, 𝑦) represent the heat kernel on 𝑀 .

Hence 𝑘−𝑡Δ/2(𝑥, 𝑥) = 𝑑𝐷𝑀∗𝜇/
√𝑔𝑑𝑥 is the Radon-Nicodym derivative of n-dimensional Wiener Measure

𝜇, restricted to the pull-back of continuous loop space Ω𝑡(𝑀)|𝑥, via the inverse of the Weiner measure-
preserving development map 𝐷𝑀 . *Note:* 𝐷𝑀−1Ω𝑡|𝑥 is not a loop space.
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Ω0
𝑡 is the space of continuous contractible loops on 𝑀 .

Ω𝑡[𝛾] is the space of continuous loops on 𝑀 homotopic to the closed geodesic 𝛾. Let 𝛾0 be its primitive
loop.

𝐷𝑀−1Ω0
𝑡 [𝛾] is the preimage of continuous contractible loops on 𝑀 written as offsets homotopic to 𝛾(𝑠) =

𝐷𝑀( 𝑠ℓ(𝛾)𝑡 ⃗𝑒1), 0 ≤ 𝑠 ≤ 𝑡. Think Horocyclic Coordinates – each fiber as the geometric limit of periodic
geodesic spheres 𝑆𝑛−1

𝛾0(𝑠)(𝑘ℓ(𝛾0)), 0 ≤ 𝑠 ≤ 𝑡, 𝑘 → ∞, vectorized in the Normal Bundle over 𝛾0. Our curvature
constraints imply Horocyclic Coordinates for every 𝛾0 exist as a smooth, 𝐷𝑀 -compatible coordinate map
for Ω0

𝑡 [𝛾].
Now ⃗𝑥(𝜏)+ℓ(𝛾) ⃗𝑒1 is the undeveloped endpoint of the ”offset” kinked geodesic homotopic to 𝛾 ∶ 𝐷𝑀( ⃗𝑥(𝜏)+

𝑠ℓ(𝛾)
𝑡 ⃗𝑒1), 0 ≤ 𝑠 ≤ 𝑡. The curve is periodic with period ℓ(𝛾0), and it revisits its kinked starting point 𝐷𝑀( ⃗𝑥(𝜏))

at time 𝑡, making the computation of its forward derivative 𝐽 = lim𝑠↑𝑡 𝐷𝑀 ′|𝐷𝑀(𝑥⃗(𝜏)+ ℓ(𝛾)𝑠
𝑡 ⃗𝑒1) tractible as a

linear automorphism of 𝑇𝐷𝑀(𝑥⃗(𝜏))𝑀 . Importantly, 𝐽𝐷𝑀(𝑥⃗(𝜏)+ℓ(𝛾) ⃗𝑒1) may be constructed using Jacobi Fields,
since 𝐷𝑀 is the (iterated) exponential map along any series of connected straight lines in ℝ𝑛. We will study
1/2∫𝑡

0 ⟨𝑑𝑋|𝑑𝑋⟩𝑠, with the solution

𝑋𝑡 = 𝑋0 +∫
𝑡

0

√
𝐽𝑋𝑡

𝑑𝐵𝑡 (1)

𝑍−Δ/2(𝑡) ∶= ∫𝑀 𝑘−𝑡Δ/2(𝑥, 𝑥)
√𝑔𝑑𝑥 = ∑∞

𝑗=0 𝑒−𝜆𝑖𝑡/2 is the trace of the heat kernel.
Finally let us define the following from their Radon-Nicodym derivatives:

𝐷𝑀∗𝜇(Ω𝑡) ∶= ∫
𝑀

𝐷𝑀∗𝜇(Ω𝑡|𝑥
√𝑔𝑑𝑥)

𝐷𝑀∗𝜇(Ω0
𝑡 ) ∶= ∫

𝑀
𝐷𝑀∗𝜇(Ω0

𝑡 |𝑥
√𝑔𝑑𝑥)

𝐷𝑀∗𝜇(Ω𝑡[𝛾]) ∶= ∫
𝑀

𝐷𝑀∗𝜇(Ω𝑡[𝛾]|𝑥
√𝑔𝑑𝑥)

(2)

7 Stochastic Trace Formula
𝑍−Δ/2(𝑡) = 𝐷𝑀∗𝜇(Ω𝑡) = 𝐷𝑀∗𝜇(Ω0

𝑡 ) +∑
{ 𝛾 }

𝐷𝑀∗𝜇(Ω𝑡[𝛾])

𝐷𝑀∗𝜇(Ω0
𝑡 ) ≈𝑡→0 (2𝜋𝑡)−𝑛/2(𝑣𝑜𝑙(𝑀) + 𝑡/6∫

𝑀
𝐾(𝑥)√𝑔𝑑𝑥 + 𝑂(𝑡2))by McKean-Singer

𝐷𝑀∗𝜇(Ω𝑡[𝛾]) = 𝑒−ℓ(𝛾)2/2𝑡 ∫
𝑀

𝐷𝑀∗𝜇(𝑒⟨𝐽𝐵𝐵𝑡|𝐵𝑡⟩
𝑡 Ω0

𝑡 [𝛾]|𝑥
√𝑔𝑑𝑥) by Cameron-Martin

= 𝑒−ℓ(𝛾)2/2𝑡 ∫
𝑇𝛾0𝑀

𝐸(𝑒𝐽𝐵
𝑡 |Ω0

𝑡 [𝛾]|𝑥(𝜏))𝑑𝑥1(𝜏)…𝑑𝑥𝑛(𝜏)𝑑𝜏

𝑑𝐷𝑀∗𝜇(𝑒−ℓ(𝛾)𝑥1(𝑡)Ω0
𝑡 [𝛾])

𝑑𝑥1(𝜏)…𝑑𝑥𝑛(𝜏)𝑑𝜏 | ⃗𝑦(𝜏) ≈𝑡→0
𝑒−⟨|𝐼−𝐽𝐷𝑀(𝑥⃗(𝜏),𝑦⃗(𝜏))𝑥⃗(𝜏)∣𝑥⃗(𝜏)⟩/2𝑡

(2𝜋𝑡)(𝑛+1)/2 (1 + 𝑂(𝑡2)) semi-classical limit

Horocyclic coordinates ∶ 𝑧(𝜏) − 𝑥(𝜏) = 𝑥 + ℓ(𝛾) ⃗𝑒1 ⟹

∫
𝑀/𝑆1⊕𝑆1

𝑘𝑡(𝑥, 𝑧)𝑑𝑥 = lim
𝑗→∞

𝑒−ℓ(𝛾)2/2𝑡
√
2𝜋𝑡

𝐸(𝑒⟨𝐽𝑋𝑗
𝑡
𝑥⃗∣𝑥⃗⟩)

= lim
𝑗→∞

𝑒−ℓ(𝛾)2/2𝑡
√
2𝜋𝑡

∫
𝑀𝑗/𝑆1⊕𝑆1

1
√
2𝜋𝑡𝑗𝑛 det |𝐼 − 𝐽𝑋𝑗 |

𝑒−ℓ(𝑋𝑗)2/2𝑡𝑋𝑗

(3)
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8 Approximation and the Selberg Trace Formula
In the dim = 2 constant curvature −𝜅2 surface case,

√𝐽𝑥⃗, ⃗𝑦𝑑𝑅𝐵 = (𝑒
𝜅𝑑(𝑥⃗, ⃗𝑦)/2 0

0 𝑒−𝜅𝑑(𝑥⃗, ⃗𝑦)/2) ⟹

⟨
√
𝐽𝑑𝑅𝐵∣

√
𝐽𝑑𝑅𝐵⟩ = 𝑒𝜅ℓ(𝐵)𝑑𝑅𝐵2

1 − 𝑒−𝜅ℓ(𝐵)𝑑𝑅𝐵2
2

∫
𝑡

0
⟨
√
𝐽𝑑𝐵∣

√
𝐽𝑑𝐵⟩ = 𝑒𝜅ℓ(𝛾) − 𝑒−𝜅ℓ(𝛾)

det 𝐼 − 𝐽𝛾 = (𝑒𝜅ℓ(𝛾)/2 − 𝑒−𝜅ℓ(𝛾)/2)2

(4)

which is constant over ( ⃗𝑥, 𝜏), so the approximation ≈𝑡→0 line in Equation (2) becomes exact:

𝐷𝑀∗𝜇(Ω𝑡[𝛾]) =
𝑒−ℓ(𝛾)2/2𝑡ℓ(𝛾0)√

2𝜋𝑡(𝑒𝜅ℓ(𝛾)/2 − 𝑒−𝜅ℓ(𝛾)/2)
𝛾(𝑡) = 𝛾0(𝑘𝑡) ⟹

= 𝑒−𝑘2ℓ(𝛾0)2/2𝑡ℓ(𝛾0)
2
√
2𝜋𝑡 sinh 𝑘𝜅ℓ(𝛾0)/2

(5)

In the dim = 3 hyperbolic manifold case, we use complex coordinates (𝑧, ̄𝑧) on the normal bundle to
write

𝐽𝐷𝑀(𝑥⃗+(𝜏+ℓ(𝛾)) ⃗𝑒1) = ⎛⎜
⎝

𝑒𝜅ℓ(𝛾) 0 0
0 𝑒−𝜅ℓ(𝛾)+𝑖𝜃(𝛾) 0
0 0 𝑒−𝜅ℓ(𝛾)−𝑖𝜃(𝛾)

⎞⎟
⎠

⟹
det 𝐼 − ⟂𝛾0

𝑘 = |1 − 𝑒−𝑘(𝜅ℓ(𝛾0)−𝑖𝜃(𝛾0))|2

(6)

and since 𝑧 = 𝑥2 + 𝑖𝑥3 ⟹ 𝑑 ̄𝑧 ∧ 𝑑𝑧 = (𝑑𝑥2 − 𝑖𝑑𝑥3) ∧ (𝑑𝑥2 + 𝑖𝑑𝑥3) = 2𝑖𝑑𝑥2 ∧ 𝑑𝑥3, the approximation in
Equation (2) again becomes exact:

𝜅 = 1 ⟹

𝐷𝑀∗𝜇(Ω𝑡[𝛾]) =
𝑒−𝑘2ℓ(𝛾0)2/2𝑡ℓ(𝛾0)

2√2𝜋𝑡(1 − 𝑒−𝑘ℓ(𝛾0))|𝑒𝑘ℓ(𝛾0)/2 − 𝑒−𝑘(ℓ(𝛾0)/2−𝑖𝜃(𝛾0))|
(7)
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