Stochastic Trace Formula for Closed, Negatively Curved Manifolds

[DRAFT] Last updated by Joe Schaefer on Sun, 30 Mar 2025    source
 

Hyperbolic Honeycomb

My 1997 Ph.D. thesis as a blog entry.

There Is Only One n-Dimensional Wiener Measure μ\mu

Piecewise Linear Approximations to Brownian Motion

The Development Map DM

The Cameron-Martin Formula

Heat Kernels as Radon-Nicodym Derivatives of Weiner Measure

Notation

MM is a negatively curved dim=n\dim=n closed Riemannian manifold with metric gg, metric connection \nabla, and (nonnegative) Laplace-Beltrami Operator ΔM\Delta_M. Let ktΔ/2(x,y)k_{-t\Delta/2}(x,y) represent the heat kernel on MM.

Hence ktΔ/2(x,x)=dDMμ/gdxk_{-t\Delta/2}(x,x) = dDM_*\mu/\sqrt{g}dx is the Radon-Nicodym derivative of n-dimensional Wiener Measure μ\mu, restricted to the pull-back of continuous loop space Ωt(M)x\Omega_t(M)\vert_x, via the inverse of the Weiner measure-preserving development map DMDM. Note: DM1ΩtxDM^{-1}\Omega_t\vert_x is not a loop space in general.

Ωt0\Omega_t^0 is the space of continuous contractible loops on MM.

Ωt[γ]\Omega_t[\gamma] is the space of continuous loops on MM homotopic to the closed geodesic γ\gamma. Let γ0\gamma_0 be its primitive loop.

DM1Ωt0[γ]DM^{-1}\Omega_t^0[\gamma] is the preimage of continuous contractible loops on MM written as offsets homotopic to γ(s)=DM(s(γ)te1),0st\gamma(s) = DM(\frac{s\ell(\gamma)}{t}\vec{e}^1), 0\leq s \leq t. Think Horocyclic Coordinates — each fiber as the geometric limit of periodic geodesic spheres Sγ0(s)n1(k(γ0)),0st,kS_{\gamma_0(s)}^{n-1}(k\ell(\gamma_0)), 0\leq s \leq t, k\rightarrow\infty, vectorized in the Normal Bundle over γ0\gamma_0. Our curvature constraints imply Horocyclic Coordinates for every γ0\gamma_0 exist as a smooth, DMDM-compatible coordinate map for Ωt0[γ]\Omega_t^0[\gamma].
In horocyclic coordinates, detg(x)=1\det{g(\vec{x})} = 1:

ds2=dxdx+h(x,y)dxdy+(1+h2(x,y))dydyg(x,0)=0,σ1=dx+h(x,y)dyσ2=h(x,y)dx+(1+h2(x,y))dyσ1σ2=dxdydσ1=hxdxdydσ2=(hy+2hhx)dxdy\begin{aligned} ds^2 &= dx\odot dx + h(x,y) dx\odot dy + (1+h^2(x,y)) dy\odot dy \\ g(x,0) &= 0,\\ \sigma_1 &= dx + h(x,y)dy \\ \sigma_2 &= h(x,y)dx + (1+h^2(x,y))dy \\ \sigma_1 \wedge \sigma_2 &= dx \wedge dy\\ d\sigma_1 &= \frac{\partial h}{\partial x}dx\wedge dy \\ d\sigma_2 &= (-\frac{\partial h}{\partial y}+2h\frac{\partial h}{\partial x}) dx\wedge dy \\ \end{aligned}

So the connection 1-form α:=Adx+Bdy\alpha := Adx + Bdy satisfies

dσ1=ασ1dσ2=σ2α    A=hy3hhxB=hhy(1+3h2)hxK=BxAy=hxhy6hhx2(1+3h2)2hxx2hyy+2h2hxy,h=h(y)    α=y(hdx+h22dy)K(y)=2hyy has Galilean Symmetry:hh(y,β)=h(y)+βy .\begin{aligned} d\sigma_1 &= \alpha \wedge \sigma_1 \\ d\sigma_2 &= \sigma_2 \wedge \alpha \\ \implies \\ A &= \frac{\partial h}{\partial y} - 3h\frac{\partial h}{\partial x} \\ B &= h\frac{\partial h}{\partial y} - (1+3h^2)\frac{\partial h}{\partial x} \\ \\ K &= \frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \\ &= \frac{\partial h}{\partial x}\frac{\partial h}{\partial y} - 6h\frac{\partial h}{\partial x}^2 - (1+3h^2)\frac{\partial^2 h}{\partial x \partial x} - \frac{\partial^2 h}{\partial y \partial y} + 2h \frac{\partial^2 h}{\partial x \partial y} ,\\ h &= h(y) \implies \\ \alpha &= \frac{\partial }{\partial y} (hdx +\frac{h^2}{2} dy)\\ K(y) &= -\frac{\partial^2 h}{\partial y \partial y}\ \\ \text{has Galilean Symmetry:} \\ h \mapsto h(y,\beta) &= h(y) + \beta y \ .\\ \end{aligned}

IMPORTANT Therefore, when h=h(y)h=h(y), the parallel transport equation reduces to c˙(t)=α(γ˙(t))c(t)=y(h dx/dt+h2/2 dy/dt)c(t)\dot{\vec{c}}(t) = -\alpha(\dot{\gamma}(t))\vec{c}(t) = -\partial_y(h\ dx/dt + h^2/2\ dy/dt)\vec{c}(t). Of course, this has closed solution

c(t)=exp(((h+βy) dx/dt+(h2/2+(βy)2/2+βyh) dy/dt)x0,y0xt,yt)c(0)\vec{c}(t) = exp(-((h+\beta y)\ dx/dt + (h^2/2 + (\beta y)^2/2 + \beta y h) \ dy/dt)|_{x_0,y_0}^{x_t,y_t})\vec{c}(0)

which is a function of the transport curve γ\gamma’s endpoints alone. This fact implies the Development Map preserves loops.

ZΔ/2(t):=MktΔ/2(x,x)gdx=j=0eλit/2Z_{-\Delta/2}(t) := \int_M k_{-t\Delta/2}(x,x) \sqrt{g}dx = \sum_{j=0}^\infty e^{-\lambda_i t/2} is the trace of the heat kernel.

Finally let us define the following from their Radon-Nicodym derivatives:

DMμ(Ωt):=MDMμ(Ωtxgdx)DMμ(Ωt0):=MDMμ(Ωt0xgdx)DMμ(Ωt[γ]):=MDMμ(Ωt[γ]xgdx)\begin{aligned} DM_*\mu(\Omega_t) &:= \int_M DM_*\mu(\Omega_t\vert_x \sqrt{g}dx)\\ DM_*\mu(\Omega^0_t) &:= \int_M DM_*\mu(\Omega^0_t\vert_x \sqrt{g}dx)\\ DM_*\mu(\Omega_t[\gamma]) &:= \int_M DM_*\mu(\Omega_t[\gamma]\vert_x \sqrt{g}dx) \\ \end{aligned}

Stochastic Trace Formula

ZΔ/2(t)=DMμ(Ωt)=DMμ(Ωt0)+{γ}DMμ(Ωt[γ])DMμ(Ωt0)t0(2πt)n/2(vol(M)+t/6MK(x)gdx+O(t2)) by McKean-SingerDMμ(Ωt[γ])=e(γ)2/2tMDMμ(et<JBBt|Bt>Ωt0[γ]xgdx)  by Cameron-Martin=e(γ)2/2tTγ0ME(etJBΩt0[γ]x(τ))dx1(τ)dxn(τ)dτ\begin{aligned} Z_{-\Delta/2}(t) = DM_*\mu(\Omega_t) &= DM_*\mu(\Omega^0_t) + \sum_{\set{\gamma}} DM_*\mu(\Omega_t[\gamma]) \\ DM_*\mu(\Omega_t^0) &\approx_{t\rightarrow 0} (2\pi t)^{-n/2}(vol(M) + t/6\int_M K(x)\sqrt{g} dx + O(t^2))\space \small\text{by McKean-Singer}\\ DM_*\mu(\Omega_t[\gamma]) &= e^{-\ell(\gamma)^2/2t}\int_M DM_*\mu(e^{\bra{J_BB_t}\ket{B_t}} _t \Omega_t^0[\gamma]\vert_x\sqrt{g}dx)\space\small \text{ by Cameron-Martin}\\ &= e^{-\ell(\gamma)^2/2t}\int_{T_{\gamma_0}M} E(e^{J_B}_{t} | \Omega_t^0[\gamma]\vert_{x(\tau)})dx^1(\tau)\dots dx^n(\tau) d\tau\\ \end{aligned}

Horocyclic coordinates:h=h(y)    =(γ0)2πtRe(1+h2(y))(γ)2/2t2sinhK(y)(γ)/2(γ)dy ,h(y)=y    =e(γ)2/2t(γ0)22πtsinhK(γ)/2Rey2(γ)2/2t(γ)dy2πt\begin{aligned} \text{Horocyclic coordinates}: \\ h&= h(y) \implies \\ &=\frac{\ell(\gamma_0)}{2\pi t}\int_{\Reals}\frac{e^{- (1+h^2(y))\ell(\gamma)^2/2t}}{2\sinh \sqrt{-K(y)}\ell(\gamma)/2}\ell(\gamma) dy\ ,\\ h(y) = y \implies \\ &= \frac{e^{-\ell(\gamma)^2/2t}\ell(\gamma_0)}{2\sqrt{2\pi t}\sinh \sqrt {-K}\ell(\gamma)/2}\int_{\Reals}e^{-y^2\ell(\gamma)^2/2t}{\frac{\ell(\gamma)dy}{\sqrt{2\pi t}}} \end{aligned}

Approximation and the Selberg Trace Formula

In the dim=2\dim = 2 constant curvature K=κ2K = -\kappa^2 case,

detIJγ=(eκ(γ)1)(1eκ(γ))=2sinhκ(γ)/2γ(t)=γ0(kt)    DMμ(Ωt[γ])=ek2(γ0)2/2t(γ0)22πtsinhkκ(γ0)/2\begin{aligned} \det |I-J_\gamma| &= (e^{\kappa\ell(\gamma)} - 1)(1 - e^{-\kappa\ell(\gamma)}) = 2 \sinh \kappa\ell(\gamma)/2\\ \gamma(t) = \gamma_0(kt)\implies \\ DM_*\mu(\Omega_t[\gamma])&=\frac{e^{-k^2\ell(\gamma_0)^2/2t}\ell(\gamma_0)}{2\sqrt{2\pi t}\sinh k\kappa\ell(\gamma_0)/2}\\ \end{aligned}

In the dim=3\dim=3 hyperbolic manifold case, we use complex coordinates (z,zˉ)(z,\bar{z}) on the normal bundle to write

JDM(x+(τ+(γ))e1)=(eκ(γ)000eκ(γ)+iθ(γ)000eκ(γ)iθ(γ))    detIγ0k=1ek(κ(γ0)iθ(γ0))2\begin{aligned} J_{DM(\vec{x}+(\tau+\ell(\gamma))\vec{e}^1)} &= \begin{pmatrix} e^{\kappa\ell(\gamma)} && 0 && 0\\ 0 && e^{-\kappa\ell(\gamma)+i\theta(\gamma)} && 0 \\ 0 && 0 && e^{-\kappa\ell(\gamma)-i\theta(\gamma)} \\ \end{pmatrix}\\ \implies& \\ \det I-{\perp_{\gamma_0}}^k &= |1-e^{-k(\kappa\ell(\gamma_0)-i\theta(\gamma_0))}|^2 \end{aligned}

and since z=x2+ix3    dzˉdz=(dx2idx3)(dx2+idx3)=2idx2dx3z=x^2+ix^3 \implies d\bar{z}\wedge dz= (dx^2-idx^3)\wedge(dx^2+idx^3) = 2idx^2\wedge dx^3, the approximation in Equation (2) again becomes exact:

κ=1    DMμ(Ωt[γ])=ek2(γ0)2/2t(γ0)22πt(1ek(γ0))ek(γ0)/2ek((γ0)/2iθ(γ0))\begin{aligned} \kappa &= 1 \implies \\ DM_*\mu(\Omega_t[\gamma]) &=\frac{e^{-k^2\ell(\gamma_0)^2/2t}\ell(\gamma_0)}{2\sqrt{2\pi t (1-e^{-k\ell(\gamma_0)})}|e^{k\ell(\gamma_0)/2}-e^{-k(\ell(\gamma_0)/2-i\theta(\gamma_0))}|}\\ \end{aligned}